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Abstract
Graph theory has numerous applications to problems in systems analysis, operations
research, transportation, and economics.  In many cases, however, some aspects of the
graph-theoretic problem are uncertain.  In these cases, it can be useful to deal with this
uncertainty using the methods of fuzzy logic.  This paper discusses the taxonomy of fuzzy
graphs, formulates some standard graph-theoretic problems (shortest paths, maximum
flow, minimum cut, and articulation points) in terms of fuzzy graphs, and provides
algorithmic solutions to these problems, with examples.
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I. Introduction
Graph theory has numerous applications to problems in systems analysis, operations
research, transportation, and economics.  In many cases, however, some aspects of a
graph-theoretic problem may be uncertain.  For example, the vehicle travel time or
vehicle capacity on a road network may not be known exactly.  In such cases, it is natural
to deal with the uncertainty using the methods of fuzzy logic.  This paper presents a
taxonomy of fuzzy graphs, providing a catalog of the various types of “fuzziness”
possible in graphs.  We also formulate some standard graph-theoretic problems (shortest
paths, maximum flow, minimum cut, and articulation points) in terms of fuzzy graphs,
and provide algorithmic solutions to these problems, with examples.

Several other formulations of fuzzy graph problems have appeared in the literature.  Klein
[Kl 91] discusses a number of alternative methods for assigning membership grades to
paths in a graph.  Lin and Chern [LC 93] treat the shortest path problem in terms of a
fuzzy linear program.  Specialized applications to PERT/CPM and decision trees are
provided by Chanas and Kamburowski [CK 81], Itakura and Nishikawa [IN 84], and
Adamo [Ad 80].  Chanas and Kolodziejczyk [CK 82; CK 84; CK 86] consider crisp flows
as solutions to the maximum flow on a graph with fuzzy edge capacity constraints.  Peng
and Juang [PJ 93] construct flow membership grades for maximum flows.  Finally, Kim
and Roush [KR 82] examine the problem of Boolean flows on a fuzzy network.  The
approach presented in this paper is distinguished by its uniform application of several key
guiding principles—the construction of fuzzy graph membership grades via the ranking
of fuzzy numbers, the preservation of membership grade normalization, and the
“collapsing” of fuzzy sets of graphs into fuzzy graphs—to the classic shortest path,
maximum flow, minimum cut, and articulation point problems.

In the rest of this section we introduce the notation for fuzzy sets used in this paper.
References [Ka 86; KF 88; KG 85] provide additional background.

A. Fuzzy Sets

A fuzzy set is a set where there is some measure of uncertainty of membership in the set.
For a fuzzy set S , each element of a referential set Ω  must be assigned a membership in
S :

(1) µ S M: Ω → ,

where µS  is the membership function for the set and M  is the set of allowed
measurements.  Typically M  is chosen to be the unit interval, [ , ]0 1 , so that

(2) µS : [ , ]Ω → 0 1 .

One also usually requires that the measure µS  be normalized: namely,

(3) ∃ ∈x Ω  such that µS x( ) = 1.
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Other choices for M  and the normalization condition are possible.  In this paper we
consider measures satisfying Equations (2) and (3).

A crisp, or non-fuzzy, set can be treated as a fuzzy set whose measure attains only the
values unity and zero:

(4) µS x( ) { , }∈ 0 1  for ∀ ∈x Ω .

Fuzzy numbers are fuzzy sets where the referential set Ω  is the set of real numbers,
integers, etc.  The interpretation here is that the belief in a fuzzy number A  being any
particular number x  is given by its measure at the number, µA x( ) .  The appendix of this
paper discusses fuzzy numbers in more detail.

B. Supports and Level Sets

The support of a fuzzy set S , written as supp( )S , is the crisp subset of the referential set
Ω  defined by

(5) { }supp( ) ( )S x xS= ∈ >Ω µ 0 .

The interpretation of this is that the support of a fuzzy set is the set of objects that are
possibly in the set.

The α -cut of a fuzzy set S , denoted by Sα , is the crisp subset of Ω  that contains all of

the elements of S  with at least the given degree of membership α :

(6) { }S x xSα µ α= ∈ ≥Ω ( ) .

Similarly, the α -level cut of a fuzzy set S , denoted by Sα , is the crisp subset of Ω  that
contains all of the elements of S  with exactly the given degree of membership α :

(7) { }S x xS
α µ α= ∈ =Ω ( ) .

Hence, S Sα
α⊆ .  The support can be rewritten in terms of cuts as

(8) α

α
SSS

]1,0(
0)(supp

∈
+ == U .

Note that S Sα
α=  if and only if α = 1.  The α -cuts and α -level cuts provide a means of

treating the elements of the set at specified levels of belief.

The level set of S , denoted by Λ S , is a subset of [0,1] containing the values α  that

determine distinct α -cuts: explicitly,

(9) { }Λ ΩS S x x= ∈ = ∈α µ α[ , ] ( )0 1  for some .
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C. Fuzzy Functions

It is useful to define functions on fuzzy sets.  Any unary function or operation

(10) f D R: →

can be generalized to apply to fuzzy sets.  Consider a fuzzy set A  with measure
µ A D: [ , ]→ 0 1 ; we define the measure for f A( )  as

(11) { })(sup)()( xy A
y=f(x)

Af µµ = ,

where µ f A R( ): [ , ]→ 0 1 .  The supremum function in Equation (11) guarantees the

preservation of the normalization condition.  Likewise, one can generalize any binary
function or operation as

(12) { })}(),({minsup)( yxz BA
zyx

BA µµµ
=⊗

⊗ = .

Here the function ⊗  could be, for example, an operation from set theory (e.g.,
⊗ ∈ ∪ ∩ −{ , , } ) or—in the case of fuzzy numbers—an arithmetical operation (e.g.,
⊗ ∈ + − × ÷{ , , , , , }min max ), etc.  Once again, the supremum function in Equation (12)
maintains the normalization condition: there is always at least one combination of x  and
y  which have unit measure, so the function’s measure will be unity for at least one z .

We can also generalize the comparison operators in the same way as other arithmetic
operations if we interpret them as Boolean-valued functions:

(13) ⊗ ℜ × ℜ →: { , }true false ,

where },,,,,{ ≤≥≠><=∈⊗ .  If we use the convenient shorthand notation,

(14a) $ ( )µ µA B A B⊗ ⊗≡ true ,

(14b) µ µA B A B⊗ ⊗≡ ( )false ,

we can express the complementary relationship between =, <, and > versus ≠, ≥, and ≤,
respectively, as

(15) $µ µA B A B⊗ ⊗= ;

for example,

$ $µ µ µ µA B A B A B A B> ≤ ≤ >= =and .

It can be shown that the normalization condition translates to

(16) $ $µ µ µA B A B A B⊗ ⊗ ⊗= = =1 1 or ;

for example,

$ $µ µA B A B= ≠= =1 1 or .
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Note that there is no other general relationship between $µA B⊗  and µA B⊗ .  Other

approaches to the problem of ranking fuzzy numbers have appeared in References [BD
85; Ch 85; DP 83; DVV 88; OM 87; Ov 89].  We adopt the one in Equation (14) because
it provides memberships for ranking based on the fundamental definition given by
Equation (12).  All ranking procedures suffer from a certain awkwardness in
interpretation and unsatisfactory application to specific cases.  In the case of Equation
(14), this arises when µ( )x  is continuous around a point x *  for which

µ µA Bx x( *) ( *)= = 1, so that $ $ $ $µ µ µ µA B A B A B A B= ≠ < ≤= = = = 1 .

II. Fuzzy Graphs
In this section we outline the notation we use for fuzzy graphs and provide a classification
of different types of graph fuzziness.

A. Notation

We use the following notation to describe graphs [Gi 85].  Only directed graphs are
treated here—undirected graphs are handled as a special case of digraphs.  At this point,
we do not make a distinction between crisp graphs and fuzzy graphs.

A graph G  consists of a set of vertices V  and a set of edges E :

(17)  G V E= ( , ) .

We label the vertices and edges with indices:

(18a) V v v vnV
= { , , , }1 2 K ,

(18b) E e e enE
= { , , , }1 2 K ,

where nV  is the number of vertices and nE  is the number of edges.  Each edge has a head
and a tail:

(19a) h ei i= head( ) ,

(19b) t ei i= tail( ) .

In a weighted graph, each edge also has a weight (sometimes called its length or
capacity),

(20) w W ei i= ( ) ,

specified by a weight function W  that maps edges to numbers (which may be crisp or
fuzzy).

A path P  is a sequences of edges

(21) P e e ei i in
= ( , , , )

1 2
K ,
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where the head of one edge is the same as the tail of the following edge,

(22)
1+

=
kk ii th  for k n= −1 1, ,( )K .

The head of the path is hin
 and the tail of the path is ti1

:

(23a) h Pin
= head( ) ,

(23b) t Pi1
= tail( ) .

If the graph is weighted, the path has a length given by the sum of the weights for the
edges in the path,

(24) l P k
e P

P w
k

= =
∈

∑length( ) .

A flow F  for a graph assigns a number to each edge of that graph,

(25) f F ei i= ( ) ,

subject to the condition that the flow on each edge is non-negative,

(26a) 0 ≤ fi  for i nE= 1, ,K ,

not more than the capacity of the edge,

(26b) f wi i≤  for i nE= 1, ,K ,

and conserved at the vertices,

(26c) ∑∑
=

=
=

=
=

ij

E

ij

E

vt

nj
j

vh

nj
j ff

,...,1,...,1

 for i a b nV= 1, $, , $, ,K K K ,

except at the source and sink vertices, va  and vb , respectively.  Note that special
interpretation will be required for Equation (26) when the weights wi  or flows fi  are
fuzzy numbers.  The value of a flow can be measured at the source or at the sink:

(27) ∑∑
=

=
=

=
==

bj

E

aj

E

vh

nj
j

vt

nj
j ffF

,...,1,...,1

)(val .

A cut K  is a set of edges that disconnects the sink vertex vb  from the source vertex va —
i.e., there is no path in the graph from va  to vb  that does not include an edge in K .  For a
weighted graph, the value of the cut is the sum of the weights in the cut:

(28) val
forward

( )
( )

K wk
e Kk

=
∈

∑ ,

where forward( )K  is the set of forward edges in the cut (i.e., edges from the source’s
partition to the sink’s partition).  A proper cut is a cut with no proper subsets that are also
cuts, and an improper cut is a cut with a proper subset that is also a cut.
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At this point, we would also like to introduce a shorthand notation [KF 88]:

(29) A A A A= + + +1 1 2 2 3 3\ \ \µ µ µ L ,

which means

(30) µ
µ

A
A x

i i
x

x A i
i( )

max{ }
=

=



=
when  for some 

otherwise0
.

This makes it convenient to express the types of graph fuzziness discussed in the next
section.

B. Taxonomy of Graph Fuzziness

There are several ways in which a graph can be fuzzy.  Below we classify the primary
types of fuzziness possible in graphs.

1. Type I: Fuzzy Set of Crisp Graphs

A trivial type of graph fuzziness arises from considering a fuzzy set G  of crisp graphs
Gi :

(31) G G G Gn nG G
= + + +1 1 2 2\ \ \µ µ µL .

From the point of view of analysis, this type of fuzziness is really not very interesting
unless the graphs Gi  have some vertices or edges in common.  Even when the basic crisp
graphs have vertices or edges in common, analysis is difficult unless the commonality has
a regular structure.  The case of most interest, which we will call Type I’, occurs when
each of the crisp graphs Gi  has the same set of vertices:

(32) V V V VnG
= = = =1 2 L .

Thus it is the presence and configuration of the edges that is fuzzy for these graphs.
Several other variations of Type I graph fuzziness exist, but we will not catalog them all
here.

The question of interpretation of fuzziness inevitably arises.  Here are two possible
scenarios involving this type of fuzziness:

Type I:  You would like to make some changes to your house’s electrical system.
However, the builder has mixed up the records for all the houses on the block.  Thus, you
can get a copy of the electrical systems for all the houses on your block, but there is no
way to distinguish which electrical plan corresponds to which house.

Type I’:  You have been given two maps with which to plan the shortest automobile route
from one city to another.  The two maps are of different dates and thus have different road
networks.  Unfortunately, there is no indication which map is more recent.



LA-UR-96-4792 9

2. Type II: Crisp Vertex Set and Fuzzy Edge Set

It may happen that a graph has known vertices, but unknown edges.  In this case the
vertex set is crisp and the edge set is fuzzy:

(33a) V v v vnV
= { , ,..., }1 2 ,

(33b) E e e en nE E
= + + +1 1 2 2\ \ \µ µ µL ,

where each edge ei  is crisp (i.e., it has fixed head, tail, and weight).  Here is a possible
scenario involving this type of graph fuzziness:

Type II:  You have to plan the shortest automobile route from one city to another.
Unfortunately, there is a lot of road construction taking place, so some roads may be
closed, but it is not known with certainty which roads are affected.

3. Type III: Crisp Vertices and Edges with Fuzzy Connectivity

In contrast with Type II graph fuzziness, it may occur that the graph has known vertices
and edges, but unknown edge connectivity.  Here both the vertex and edge sets are crisp,
but the edges themselves have fuzzy heads and tails:

(34a) V v v vnV
= { , ,..., }1 2 ,

(34b) E e e enE
= { , ,..., }1 2 ,

(34c) h h h hi i i i i i n i nV V
= + + +, , , , , ,\ \ \1 1 2 2σ σ σL  for i nE= 1, ,K ,

(34d) t t t ti i i i i i n i nV V
= + + +, , , , , ,\ \ \1 1 2 2τ τ τL  for i nE= 1, ,K .

This type of graph fuzziness is relevant in the following example:

Type III:  You have to plan the shortest automobile route from one city to another.  Many
of the routes involve ferry crossings over a large body of water.  Unfortunately, the ferry
schedule is vague as to which drop-off points correspond to which pick-up points.

4. Type IV: Fuzzy Vertex Set and Crisp Edge Set

In an analogy with Type II graph fuzziness, it may happen that a graph has unknown
vertices, but known edges.  In this case the vertex set is fuzzy and the edge set is crisp:

(35a) V v v vn nV V
= + + +1 1 2 2\ \ \µ µ µL ,

(35b) E e e enE
= { , ,..., }1 2 .

Equation (35) requires careful interpretation because edges cannot exist in a graph if their
head and tail vertices do not exist; we call the edge set crisp even though it depends on
fuzzy vertices.  The following example shows how this type of graph fuzziness might
occur:
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Type IV:  You would like to give presentations at several conferences consecutively and
need to determine the most cost-effective travel plan for attending the conferences.  The
conference committees, however, have not yet revealed the locations of their respective
conferences.

5. Type V: Crisp Graph with Fuzzy Weights

A fifth type of graph fuzziness—one of much interest—occurs when the graph has known
vertices and edges, but unknown weights (or capacities) on the edges.  Thus only the
weights are fuzzy:

(36) w w wi i i i i= + +, , , ,\ \1 1 2 2µ µ L .

Here is a possible scenario involving this type of graph fuzziness:

Type V: You have to plan the quickest automobile route from one city to another.
Unfortunately, the map gives distances, not travel times, so you do not know exactly how
long it takes to travel any particular road segment.

6. Relationship between Types of Graph Fuzziness

It is clear that a fuzzy graph may have various combinations of fuzziness of types I–V.
Also, the five types of fuzziness discussed above are somewhat interrelated in that it is
possible in some cases to collapse the fuzziness of one type into another type.  For
example, a graph with Type I' fuzziness can be converted to a graph with Type II
fuzziness by identifying the correspondence between edges in the different Type I' graph
elements:

(37a) E e e e
n nE E

II II II II
II II= + + +1 1 2 2\ \ \λ λ λL ,

where

(37b) { }λ µi
j

j j i iG t h= max  contains an edge from  to II II .

This procedure always preserves the normalization condition.  One can also construct
other schemes for collapsing fuzziness; however, not all schemes preserve the
normalization condition.

It is also possible to expand the fuzziness of a graph.  Type II fuzzy graphs can be
expanded to Type I' fuzzy graphs by enumerating all of the possible crisp graphs
consistent with the fuzzy graph: simply assign a membership

(38) { }µ ηj
e E

i
i j

=
∈

min ,

where ηi  is the membership of edge i  in the Type II fuzzy graph, for each Type I' edge
set E j  in the power set ℘({ , , , })e e enE1 2 K  of possible edge sets.  A similar procedure is

available for expanding Type III or IV graphs into Type I' graphs.
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C. Other Fuzzy Graph-Theoretic Constructs

Our general approach for defining fuzzy graph-theoretic objects such as paths and flows
on a fuzzy graph G  is to assign a membership to the object based on the minimum
memberships of crisp objects over the components of G .

1. Fuzzy Paths

We define a fuzzy path with a tail vertex va  and a head vertex vb on a graph G  to be a
Type II fuzzy graph with edge memberships µ( )i  such that

(39) µ( )i > 0  implies ∃ ∈P abΠ  such that µ µ( ) ( ),j i e Pj≥ ∀ ∈

and

(40) ∃ ∈P abΠ  such that µ( ) ,j e Pj= ∀ ∈1 ,

where Πab  is the set of crisp paths from va  to vb .  Equations (39) and (40) induce a
membership for paths P ab∈Π  in the fuzzy path:

(41) { })(min)( iP
Pei

µπ
∈

= .

The normalization condition ensures that there will always be at least one most likely path
along which µ( )i = 1.  If the graph is weighted, then the fuzzy length of the path is
defined as the fuzzy number with membership

(42) { }λ µ π( ) max min{ ( )} max ( )
( ) ( )

x i P
P

x P
e P P

x P
ab i ab

= 







=
∈

=
∈ ∈

=
Π Π

length length

.

One can construct a fuzzy path from a fuzzy set S P P Pn= { , , , }1 2 K  of crisp paths with the
same tail vertex va  and head vertex vb , where π ( )P  is the measure for each path P S∈ .
The fuzzy length of such a fuzzy path can be written in terms of the lengths
l i iP= length( )  of the various paths Pi :

(43) )(\)(\)(\ 2211 nn PPP πππ lLlll +++= .

2. Fuzzy Cuts

We define a fuzzy cut with a source vertex va  and a sink vertex vb  on a graph G  to be a
Type II fuzzy graph with edge memberships µ( )i  such that

(44) µ( )i > 0  implies ∃ ∈K abΚ  such that µ µ( ) ( ),j i e Ki≥ ∀ ∈

and

(45) ∃ ∈K abΚ  such that µ( ) ,j e Kj= ∀ ∈1 ,
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where Κab  is the set of all crisp cuts between va  and vb .  Equations (44) and  (45) induce
a membership for cuts K ab∈Κ  in the fuzzy cut:

(46) { }κ µ( ) min ( )K i
e Ki

=
∈

.

Again, as a result of the normalization condition, there will always be at least one most
likely cut between the source vertex and the sink vertex with µ( )i = 1, ∀ ∈e Ki .  If the
graph is weighted, then the fuzzy value of the cut is defined as fuzzy number with
membership

(47) { }λ µ κ( ) max min{ ( )} max ( )
( ) ( )

x i K
K

x K
e K K

x K
ab i ab

= 







=
∈

=
∈ ∈

=
Κ Κ

val val

.

One can construct a fuzzy cut from a fuzzy set S K K Kn= { , , , }1 2 K  of crisp cuts between
the source vertex va  and a sink vertex vb , where κ ( )K  is the measure for each cut
K ab∈Κ .  The fuzzy value of such a fuzzy cut can be written in terms of the values

)(val ii Kk =  of the various cuts Ki :

(48) )(\)(\)(\ 2211 nn KkKkKkk κκκ +++= L .

3. Fuzzy Flows

We define a fuzzy flow with a source vertex va  and a sink vertex vb on a graph G , with
edge weights wi , to be a Type V fuzzy graph with edge weight memberships µi x( )  such
that

(49) µi x( ) > 0  implies ∃ ∈F abΦ  such that ( ) ( )µ µj j i i jF e F e e G( ) ( ) ,≥ ∀ ∈  ,

(50) µ µi x wx
i

( ) $≤ ≤  ,

and

(51) ∃ ∈F abΦ  such that ( )µ j j jF e e G( ) ,= ∀ ∈1  ,

where Φab  is the set of all crisp flows between va  and vb and where $µ f wj j≤  is taken in the

sense of Equation (14a).  Equations (49) and (51) induce a membership for flows
F ab∈Φ  on the fuzzy flow:

(52) ( ){ }ϕ µ( ) min ( )F F e
e G

i i
i

=
∈

 ,
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Because of the normalization condition, there will always be at least one most likely flow
for which µi x( ) = 1.  The fuzzy value of the flow is defined as fuzzy number with
membership

(53) ( ){ } { }λ µ ϕ( ) max min ( ) max ( )
( ) ( )

x F e F
F

x F
e G

i i
F

x F
ab i ab

= 







=
∈

=
∈ ∈

=
Φ Φ

val val

.

One can construct a fuzzy flow from a fuzzy set S F F Fn= { , , }1 2 K  of crisp flows between
the source vertex va  and a sink vertex vb , where ϕ( )F  is the measure for each flow
F ab∈Φ .  The fuzzy value of such a fuzzy flow can be written in terms of the values

)(val ii Fu =  of the various flows Fi :

(54) )(\)(\)(\ 2211 nn FuFuFuu ϕϕϕ +++= L .

III. Shortest Path

A. Formulation

1. General Formulation

Consider a fuzzy graph G  with pure Type V fuzziness.  (Graphs with Type II fuzziness
also can be considered by treating the graph as a Type V graph where the weight has the
possibility of being infinite—i.e., µwi

( )∞ > 0.)  Let Π  be the set of all paths from vertex

va  to vertex vb  and let the fuzzy length of a path be

(55) ∑
∈

==
Pe

kP

k

wP)(lengthl  where P ∈Π .

The fuzzy set of shortest paths is a fuzzy set S  on Π  with memberships π S  given by

(56) π µS
Q

P
P Q

( ) { $ }=
∈ ≤min

Π l l
 where P ∈Π .

The support consists of all of the paths which potentially could have the minimum length,

(57) { }supp ,( ) $S P Q
P Q

= ∈ > ∀ ∈≤Π Πµ
l l

0 ,

and the measure associated with a given path is just the certainty that it is shorter than all
other paths.

The fuzzy set of shortest paths defined above can be collapsed into a fuzzy shortest path,
where each edge ei  has a membership in the fuzzy set ′S :

(58) µ π′ ∈ ∈
=S

e P P
Si P

i

( ) { ( )}
,

max
Π

 for i nE= 1, ,K .
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One can write this alternately as

(59) µ µ′ ∈ ∈ ∈ ≤= 
S

e P P
i

i
P Q

( ) $
,

max min{ }
QΠ Π l l

 for i nE= 1, ,K .

The fuzzy shortest path satisfies the definition of a fuzzy path that we introduced in
Equations (39) and (40).  Equation (43) defines the fuzzy length of the fuzzy shortest
path.  Note that this produces a doubly fuzzy set (i.e., a fuzzy set of fuzzy numbers).

2. Alternate Formulation in Terms of Level Sets

An alternate approach to the shortest path problem is to consider the level graphs.  Let G
be a graph with purely Type V fuzziness.  In considering the level-set formulation, we
will restrict ourselves to the case where each weight wi  is a fuzzy convex number.  Thus

each α -level cut set wi
α  will consist of two (not necessarily distinct, if 1=α ) elements

wi
α −

 and wi
α +

, with w wi i
α α− +

≤ .  Now let Gα  be the set of crisp graphs with edge i

having the weight wi
α +

 or wi
α −

.  Hence, Gα  consists of at most 2nE  crisp graphs.  For

α = 0  we have ( )w wi i
α +

= sup supp  and ( )w wi i
α −

= inf supp .  Define the fuzzy set of

shortest paths for the fuzzy graph G  to be the fuzzy set Σ  on Π  with membership
function

(60) { }α

αΣ Σαη ∈=
∈

PP
]1,0(

max)( ,

where

(61) { }Σ α α= ∈P P GΠ  is a shortest path of some graph in .

Consequently, the support of the fuzzy set of shortest paths formulated via level sets is

(62) { }supp  for some ( ) ( , ]Σ Σ= ∈ ∈ ∈P PΠ α α 0 1 .

It is also possible to collapse the fuzzy set of shortest paths in this formulation into a
fuzzy shortest path satisfying Equations (39) and (40), where each edge ei  has a
membership in the fuzzy set ′Σ :

(63) µ η′ ∈ ∈
=Σ Σ( ) { ( )}

,
i P

e P Pi

max
Π

 for i nE= 1, ,K .

3. Relationship between the Two Formulations

A natural question to ask is what is the relationship between the fuzzy set of shortest
paths as defined in general, Equation (56), and that defined via the level-set formulation,
Equation (60).  The following is a partial answer to this question.

Claim:  Let G  be a graph with Type V fuzziness and with edge weights wi , which are
convex fuzzy numbers.  Then, )(supp)(supp S⊆Σ .  This inclusion is proper in general.
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Proof:

Part (A):  Let P ∈supp( )Σ , so by definition P ∈Σ α  for some α > 0 .  Since the edge weights

are continuous, we may assume 10 << α .  Define { }κ =
∈









min sup supp(
Q

Q
Π

l )  and let Qκ ∈Π

be a path such that { }κ
κ

≡ sup ( )supp lQ .  Notice that

{ } { } κ
κκ

ααα =∑≤∑≤∑<∑≤∑
∈∈

+

∈∈

−

∈

+

Qe
j

Qe
j

Pe
i

Pe
i

Pe
i

jjiii

wwwww )(suppsup)(suppinf .

Here the strict inequality follows from 1<α .  Hence by Equation (64)—which will be proved in
the next section—we have )(supp SP ∈ .  Therefore, )(supp)(supp S⊆Σ .

Part (B):  Here we present an example where Σ)(supp)(supp ⊄S .  Let G be the following graph:

e1
e 2

e
3

e4v1 v2

v3

v4

Let the edge weights be triangular fuzzy numbers (see the Appendix) w  = w  = , ,1 4 0 1 2[ ]  and

]4,21[32 , =  = ww .  There are two paths from v1  to v4 , P= e , e , e( )1 2 3  and Q= e , e( )1 4 , with

lengths ]10,5,2[=Pl  and lQ = [ ,4]0,2 .  Thus κ =  4 , and Q  is the path where this is obtained.

Since $µ
l lP Q≤ > 0 , we have )(supp SP ∈ .  However, we claim that P ∉Σ α  for any α .

The α -level cut sets of the edge weights for α ∈ ( ]0,1  are w w1 4
α α α α= = −{ ,2 }  and

}24,1{32 αααα −+== ww .  Thus, there are eight graphs in the set Gα  for α ∈ ( ]0,1 .  For any

graph g G∈ α , notice that 
ggg

wwwg
P

ααα
321 ++=l  and lQ

g w w
g g

= +1 4
α α .  Thus, for

any level graph αG , we have g
Q

g
P ll ≤  if and only if 

ggg

www ααα
432 ≤+ .  However, the maximum

value for α
4w  is α−2  whereas the minimum value for 

gg

ww αα
32 +  is the sum of their respective

minimum values, i.e., α22 + .  Since αα −>+ 222  for  α ∈ ( ]0,1 , we have 
ggg

www ααα
432 >+ .

Hence, P ∉Σ α  for any α ∈ ( ]0,1 , and thence Σ)(supp∉P .

B. Algorithm

We said previously that the set of possible shortest paths is

(57) { }Π∈∀>Π∈= ≤ QPS
QP

,0ˆ)(supp
ll

µ .

In order to solve the fuzzy shortest path problem algorithmically, it is useful to consider
the following estimation:

(64) { }{ } { }{ }κκ ≤Π∈⊆⊆<Π∈ )(suppinf)(supp)(suppinf PP PSP ll

where
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(65) { }{ }κ =
∈

min supp(
P

PΠ
sup )l .

Proof:
Case (A):  Let Π∈P  such that 0ˆ >≤ QP ll

µ  for ∀ ∈Q Π .  Since there are only a finite number of

paths Q ∈Π , κ  is the minimum of a finite set of numbers.  Hence there exists Π∈Q  such that

{ }κ = sup ( )supp lQ .  By hypothesis $µ
κ

l lP Q≤ > 0 , hence, ∃ ∈p Psupp( )l  and ∃ ∈q Qsupp( )l

such that { }p q Q≤ ≤ =sup ( )supp l κ .  Thus, { }inf ( )supp l P p q≤ ≤ ≤ κ , so

{ } κ≤)(suppinf Pl .

Case (B):  Let Π∈P  such that { } κ<)(suppinf Pl .  Let p P∈supp( )l  with κ<p , and let

Q ∈Π .  Since { }κ ≤ sup ( )supp lQ , there is some )(supp Qq l∈  such that pq > .  Hence,

0ˆ >≤ QP ll
µ .  Since Q  was arbitrary, )(supp SP ∈ .

Remark:  If { } κ=)(suppinf Pl , then )(supp SP ∈  if and only if 0)( >κµ
Pl

 and for ∀ ∈Q Π

such that { } κ=)(suppinf Ql  we have 0)( >κµ
Ql

.

Now consider the graph G  that is identical to G , except the edge weights are crisp:

{ }w wi i= inf ( )supp .  Hence we have an isomorphism between the set of paths Π  in G

and the set of paths Π  in G .  Let P ∈Π and P ∈Π  be corresponding paths in the two

graphs: { }E e e eP P P Pn
=

1 2
, ,...,  and { }E e e eP P P Pn

=
1 2
, ,...,  represent the set of edges that

occur in P and P , respectively; analogously, wPi
 and wPi

 will represent the edge

weights, so we can write lP P
i

n

w
i

=
=
∑

1

 and l P P
i

n

w
i

=
=
∑

1

.

Claim:  { } { }inf ( ) inf inf ( )supp supp suppl lP P
i

n

P
i

n

P
i

n

Pw w w
i i i

=














= = =
= = =
∑ ∑ ∑

1 1 1

Proof:
The first, third, and fourth equalities are a direct application of the definitions of l P , w Pi

 and l P

respectively.  The second equality follows almost directly from the definition of fuzzy addition.

Using the α -level cut definition of addition, we see that  ( )w wP
i

n

P
i

n

i i= =
∑ = ∑



1 1

α α
 and

( )w wP
i

n

P
i

n

i i= =
∑ = ∑



1 1α α

 for all α > 0 .  Hence, in particular, ( )inf infw wP
i

n

P
i

n

i i= =
∑ = ∑



1 1α α

.  Since

this holds for arbitrary α > 0 , we can take limits on both sides to obtain

( ) ( ){ }inf lim inf lim inf infsupp suppw w w wP
i

n

P
i

n

P
i

n

P
i

n

i i i i= → = → = =
∑ = ∑ = ∑ = ∑












1 0 1 0 1 1α α α α

,

which substantiates the claim.
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Similarly, we consider the graph G  that is identical to G , except the edge weights are

crisp: { }w wi i= sup ( )supp .  Once again, the paths P ∈Π  in G  correspond to P ∈Π in

G , where the lengths are given by l P P
i

n

w
i

=
=
∑

1

.

Claim:  { } { }sup ( ) sup sup ( )supp supp suppl lP P
i

n

P
i

n

P
i

n

P
w w w

i i i=














= = =
= = =
∑ ∑ ∑

1 1 1

Proof:
The proof of this claim is analogous to that of the previous claim.

We can now re-express Equations (64) and (65) as

(66) { } { }κκ ≤Π∈⊆⊆<Π∈ PP PSP ll )(supp ,

where

(67) { }κ =
∈

min
P PΠ

l .

Thus we have reduced the fuzzy shortest path problem to a pair of crisp shortest path
problems: (i) find κ , the length of the shortest path in G ; and (ii) find S , the paths with
lengths less than κ  in G .  Special consideration should be given to boundary points.
Numerous methods are available for solving the first problem; the second problem can be
solved by adapting algorithms for the k-shortest path problem [Sh 79; To 88; Ye 71].

C. NP Completeness

Given a graph G  and two fixed vertices va  and vb , the longest path problem “Does there
exist a path from va  to vb  of length greater than or equal to κ ?” is NP-complete in

general [GJ 79].  Thus, for a crisp graph with crisp weights { }w wi i= inf ( )supp , finding

all paths of length less than κ  is also an NP-complete problem.  Hence, any algorithm for
computing all paths of length less than κ  is NP-hard, as is the fuzzy shortest path
problem.  Note that the longest path problem can be solved in polynomial time for
directed acyclic graphs [La 76].

D. Example

Next we solve a simple fuzzy shortest path problem for the Type V fuzzy digraph shown
in Figure 1.  The fuzzy lengths for the four paths from vertex a to vertex f are listed in
Figure 2—from this we see that κ = 8 and that path abdf has membership π S abdf( ) = 1,
path abef has membership π S abef( ) /= 2 5 , and the other paths have membership
π πS Sacdf acef( ) ( )= = 0  in the fuzzy set of shortest paths.  Figure 3 illustrates the fuzzy
shortest path.
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Figure 1.  Example Type V fuzzy directed graph.  The vertex a is the source/origin and the vertex f is
the sink/destination.  The edge weights are either crisp numbers or fuzzy triangular numbers (see
Appendix).
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Figure 2.  Fuzzy path lengths for the paths from vertex a to vertex f of the graph in Figure 1.

Figure 3.  The fuzzy shortest path from vertex a to vertex f of the graph in Figure 1.  The thick solid
lines have membership 1, the thin solid lines have membership 2/5, and the dotted lines have
membership 0.

As a more practical example of the theory, we consider the problem of finding the fuzzy
shortest path (in terms of travel time) from Santa Fe, New Mexico, to Monticello, Utah,
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in the United States.  Figure 4 shows the vertices and edges in our representation of the
highway network between the two cities.  Each edge has been assigned a fuzzy travel
time based on the length of the highway segment as well as a fuzzy travel speed along it.
We use the triangular representation (see the Appendix) for the fuzzy numbers involved.

Bluff

Shiprock

Gallup

Grants

Farmington

Cortez Durango

Chama

Pagosa Springs

Abiquiu

Albuquerque

Cuba

Santa Fe

Monticello

Figure 4.  Highway map of the four-corners area of the United States.  In this example, we want to
find the path fuzzy shortest path (in terms of travel time) from Santa Fe to Monticello.

By applying the methods of the preceding section, we have identified the fifteen paths in
the support of the fuzzy set of shortest paths.  Figure 5 and Figure 6 show the fuzzy
lengths (i.e., travel times) and memberships for the paths in the support.  Figure 7
presents the six paths with the greatest membership in the fuzzy set.  If we use Equation
(59) to collapse the fuzzy set of shortest paths into a fuzzy shortest path, we arrive at the
graph in Figure 8 that solves the problem posed here.
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Figure 5.  Fuzzy path lengths for the paths in the support of the fuzzy set of shortest paths for the
problem in Figure 4.  The horizontal line shows the value of κ given by Equation (65).
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Figure 6.  Memberships of the paths in the support of the fuzzy set of shortest paths for the problem
in Figure 4.
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l = [5.310,  5.807,  5.927]

µ
l

= 1

l = [5.435,  5.941,  6.073]

µ
l

=.972

l = [5.653,  6.176,  6.312]

µ
l

=.524

l = [5.654,  6.189,  6.355]

µ
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l = [5.668,  6.205,  6.325]

µ
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=.481

l = [5.676,  6.197,  6.310]

µ
l

=.481

Figure 7.  The six paths (dark lines) with the greatest membership in the fuzzy set of shortest paths
for the problem in Figure 4.
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Figure 8.  The fuzzy shortest path for the problem in Figure 4.  The thickness of the edge is
proportional to its membership in the path.  The solid line thickness represents the membership
range: thickest for µ ∈ (¾, 1],  thick for µ ∈ (½, ¾], thin for µ ∈ (¼, ½], and thinnest for µ ∈ (0, ¼].
The dashed lines have membership zero.

IV. Minimum Cut

A. Formulation

1. General Formulation

Consider a fuzzy graph G  with pure Type V fuzziness.  (Graphs with Type II fuzziness
also can be considered by treating the graph as a Type V graph where the weight has the
possibility of being zero—i.e., µwi

( )0 0> .)  Let Κ  be the set of all proper cuts with a

source vertex va  and a sink vertex vb , and let the value of a cut be

(68) k K wK k
e Kk

= =
∈

∑val
forward

( )
( )

 where K ∈Κ .
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Note that if only proper cuts are considered, all of the edges in K  will be forward.  The
fuzzy set of minimum cuts is a fuzzy set S  on Κ  with memberships

(69) { }κ µS
L

k kK
K L

( ) min $=
∈ ≤Κ

 where K ∈Κ .

The support consists of all the cuts which could have the minimum capacity,

(70) { }supp( ) $ ,S K Lk kK L
= ∈ > ∀ ∈≤Κ Κµ 0 ,

and the measure associated with a given cut is the certainty that its value is less than the
value of any other cut.

As with the shortest path, this fuzzy set of minimum cuts can be collapsed into a fuzzy
minimum cut, where each edge ei  has a membership

(71) { }µ κ′ ∈ ∈
=S

e K K
Si K

i

( ) max ( )
, Κ

 for i nE= 1, ,K

in the fuzzy set ′S .  This can also be written as

(72) { }{ }µ µ′ ∈ ∈ ∈ ≤=S
e K K L

k ki
i

K L
( ) max min $

, Κ Κ
 for i nE= 1, ,K .

Note that this satisfies the definition of fuzzy cut presented in Equations (44) and (45).
Equation (48) defines the fuzzy value of the fuzzy minimum cut.

2. Alternate Formulation in Terms of Level Sets

We will again consider an alternate formulation in terms of level sets.  As in the case for

the shortest path problem, let G α  be the set of crisp graphs with edge weight wi
α+

 or wi
α−

.
Recall that for convex weights G α  consists of 2nE  graphs for α ∈( , )0 1 .  We define the
fuzzy set of minimum cuts for the fuzzy graph G  to be the fuzzy set Σ  on Κ  with
membership function

(73) ( ) { }η α
α

α
Σ ΣK K= ∈

∈
max

[ , ]0 1

where

(74) { }Σ α α= ∈K K GΚ is a minimum cut of some graph in .

Thus we find that the support of the fuzzy set of minimum cuts is

(75) ( ) { }supp for someΣ Σ= ∈ ∈ ∈K KΚ α α ( , ]0 1 .

Again it is possible to collapse this fuzzy set of minimum cuts into a fuzzy minimum cut
where each edge ei  has membership

(76) ( ) ( ){ }µ η′ ∈ ∈
=Σ Σi K

e K Ki

max
, Κ

 for i nE= 1,...,
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in the fuzzy set ′Σ .

3. Relationship between the Two Formulations

As with shortest path, we find that the level-set formulation gives a smaller set than the
general formulation: namely, ( ) ( )Ssuppsupp ⊆Σ .  Again, the inclusion is proper in
general.

Proof:
The proof is a straightforward generalization of the corresponding proof for the shortest path.  For
Part (A), simply replace all paths with cuts and lengths with cut capacities.  For part (B), we use a
similar graph for a counter-example.  Let ′G  be the following graph with source at v1  and sink at

v3 :
v2

v3v1

e 1

e2

e
3

e
4

Choose ]4,3,2[1 =w , ]3,2,1[2 =w , and ]4,3,2[43 == ww .  In this case, let L e e= { , }1 2  and

K e e e= { , , }2 3 4 .  Inspection yields 7=κ  with L  as the cut when this is obtained.  Since

$µk kK L≤ > 0 , we have K S∈ .  Again, by using the same technique with level cuts as in the proof in

the shortest path section, one can easily obtain K ∉ Σ α  for any α ∈ ( , ]0 1 .

B. Algorithm

In analogy with how we proceeded in the shortest path problem, we can reformulate
Equation (70) to estimate the possible minimum cuts as

(77) { }{ } { }{ }κκ ≤Κ∈⊆⊆<Κ∈ )(suppmin)(supp)(suppmin KK kKSkK ,

where

(78) { }{ }κ =
∈

min supp(
K

Kk
Κ

sup ) .

(We omit the proofs in this section, as they are analogous to the corresponding ones for
shortest paths.)  Once again, we consider the graphs G  and G  that are identical to G ,

except that the edge weights are crisp: { }w wi i= inf ( )supp  and { }w wi i= inf ( )supp ,

respectively.  This permits us to re-express Equations (77) and (78) as

(79) { } { }κκ ≤Κ∈⊆⊆<Κ∈ KK kKSkK )(supp ,

where

(80) { }κ =
∈

min
K Kk

Κ
.
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Thus we have reduced the fuzzy minimum cut problem to a pair of crisp minimum cut
problems: (i) find κ , the value of the minimum cut in G ; and (ii) find S , the cuts with
values less than κ  in G .  Again, the boundary values need to be checked separately.
Numerous methods are available for solving the first problem.  The second problem can
be dealt with via the following recursive procedure:  Solve the minimum cut problem on

Gg =:  to find a minimum cut },,,{ 21 neee K  containing n  edges.  Now consider graphs

nggg ,,, 21 K  that differ from g  in that the head and tail vertices of edge ei  are merged

into a single vertex: i.e., construct gi  by removing the vertex ti  from g  and by making
any edges connected to ti  in g  connect to hi  in gi .  Next solve the minimum cut

problems on nggg ,,, 21 K .  If the value of the minimum cut for gi  is less than or equal to

κ , then the cut belongs to S  and the foregoing procedure must be repeated with igg =: .

This algorithm was inspired by a graph contraction algorithm for enumerating all
minimum cuts [MR 96].

C. NP Completeness

Given a graph G , the maximum cut problem “Does there exist a separation of the
vertices in G  into two disjoint subsets V1  and V2  such that the sum of the weights of
edges with tail in V1  and head in V2  is greater than or equal to κ ?” is NP-complete in

general [GJ 79].  Thus, for a crisp graph with crisp weights { })(suppinf ii ww = , finding

all cuts of capacity less than κ  is also an NP-complete problem.  Thus, the general fuzzy
minimum cut problem is NP-hard.

D. Example

We now solve the fuzzy minimum cut problem for the example digraph in Figure 9,
considering the cuts that separate the source vertex a from the sink vertex f.  Figure 10
shows the values of the cuts in the support of the fuzzy set of minimum cuts, and Figure
11 shows the cuts themselves.  The three cuts can be collapsed into the fuzzy minimum
cut shown in Figure 12.
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Figure 9.  Example directed graph for the fuzzy minimum cut problem.  We consider cuts that
separate the source vertex a from the sink vertex f.  The edge weights are either crisp numbers or
fuzzy triangular numbers (see Appendix).
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Figure 10.  Fuzzy minimum cut values for the cuts in the support of the fuzzy set of minimum cuts for
the problem in Figure 9.  The horizontal line shows the value of κ given by Equation (78).
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Cut 1
k = , ,[5 6 7]

µk = 1

Cut 2
k = , ,[4 6 8]

µk = 1

Cut 3
]1086[ ,,k = 

µk = 1 2/

Figure 11.  The cuts (solid lines) in the support of the fuzzy set of minimum cuts for the problem in
Figure 9.

Figure 12.  The fuzzy minimum cut for the problem in Figure 9.  The thickness of the edge is
corresponds to its membership in the cut: the thick lines represent µ = 1, the thin ones represent
µ = ½, and the dotted lines have membership 0.

V. Maximum Flow

A. Formulation

Consider a fuzzy graph G  with pure Type V fuzziness.  (Graphs with Type II fuzziness
also can be considered by treating the graph as a Type V graph where the weight has the
possibility of being zero—i.e., µwi

( )0 0> .)  Let Φ  be the set of all crisp flows on the

graph G  with a source vertex va  and a sink vertex vb  and let the value of a flow be

(81) ∑∑
=

=
=

=
==

bj

E

aj

E

vh

nj
j

vt

nj
jF ffF=u

,...,1,...,1

)(val ,

where )( ii eFf ≡ .  We define the degree to which a flow satisfies the fuzzy edge weights

as

(82) { }γ µ( ) minF
e G

f w
i

i i
=

∈ ≤ .

The fuzzy set of maximum flows is a fuzzy set S  on Φ  with memberships

(83) ϕ
γ

S

F
F

F u u
( )

( ) max=
≥




if 

otherwise0
 where F ∈Φ



LA-UR-96-4792 28

and where

(84) { }u u
H H

Hmax
( ) ,

max=
= ∈γ 1 Φ

is the largest value of the flow with unit membership.  The support consists of all the
flows which could have the maximum flow,

(85) { }supp( ) ( ) , maxS F F u uF= ∈ > ≥Φ γ 0 ,

and the measure associated with a given flow is the certainty that its value is greater than
the value of any other flow.

As with the shortest path, the fuzzy set of maximum flows can be collapsed into a fuzzy
maximum flow, where each edge flow fi  has a membership in the fuzzy set ′S :

(86) { }µ ϕ′ = ∈
=S

f x F
Si

i

x F( ) max ( )
, Φ

 for i nE= 1, ,K .

This can also be written as

(87) { }µ γ′ = ≥ ∈
=S

f x u u Fi
i F

x F( ) max ( )
, ,max Φ

 for i nE= 1, ,K .

Note that this satisfies the definition of fuzzy flow presented in Equations (49), (50), and
(51).  Equation (54) defines the fuzzy value of the fuzzy maximum flow.

B. Algorithm

Solving the fuzzy maximum flow problem stated above requires enumerating all of the
flows in G  that have a value greater than umax —a difficult problem even for situations
where the flows are integers.  It is possible, however, to find an upper bound on the value
of the flow by solving the maximum flow problem for the crisp graph G .  This provides
us with the support of the fuzzy maximum flow value:

(88) { }





∈
F

GF

uu sup,max .

There may also be a relationship between the fuzzy maximum flow value and the fuzzy
minimum cut value, as there is for crisp graphs.

C. Example

As an example, we consider the fuzzy maximum flow problem from vertex a to vertex f
of the graph in Figure 13.  This problem is simple enough to solve by the exhaustive
application of Equation (87); Figure 14 illustrates the fuzzy maximum flow.  The value of
the fuzzy maximum flow is [ , , ]6 6 7 .
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Figure 13.  Example directed graph for the fuzzy minimum cut problem.  We consider cuts that
separate the source vertex a from the sink vertex f.  The edge weights are either crisp numbers or
fuzzy triangular numbers (see Appendix).
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Figure 14.  Membership functions for the flows on edges of the fuzzy maximum flow from vertex a to
vertex f of the graph in Figure 9.

VI. Articulation Points

A. Formulation

For a crisp, connected, and undirected graph, an articulation point is a vertex that, when
removed from the graph, makes the graph disconnected [Se 92].  When generalizing this
concept to fuzzy graphs, it is most interesting to consider graphs with Type I’ fuzziness.
(Fuzzy graphs of Types II, III, and IV can be treated by expanding them to Type I’ using
Equation (38).)  Let ℘( )V  be the power set for V  (i.e., the set of all subsets of V ).  The
fuzzy set of articulation points is a fuzzy set A  on ℘( )V  with memberships λA  given by

(89) { }{ }jSj
nj

A
G

S ,
,..,1

,minmax)( ωµλ
=

=  where )(VS ∈℘ ,
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where ωS j,  is unity if S  is the articulation points for the graph Gj , and zero otherwise.

Note that this definition preserves the unit normalization condition, since there is always
some j  for which µ j  is unity and ωS j,  is also unity for some S  (even if S  is the empty

set).

The fuzzy set of articulation points defined above can be collapsed into fuzzy articulation
points, where each vertex vi  has a membership

(90) { }λ λ′ ∈
=A

v S
Ai S

i

( ) ( )max  for i nV= 1, ,K

in the fuzzy set ′A .  This is equivalent to assigning the membership via

(91) { }{ }λ µ ω′ =
=A

j n
j i ji

G

( ) ,
,..,

,max min
1

 for i nV= 1,..., ,

where ωi j,  is unity if vi  is an articulation point in the graph Gj , and zero otherwise.

Note that unit normalization is preserved by this operation only if there exists a graph Gj

that has unit normalization µ j = 1 and some articulation points:

(92) ∃ =j j, µ 1 and ωS j, = 1 and S ≠ ∅ .

B. Algorithm

For graphs with Type I’ fuzziness, one can apply any standard algorithm for finding
articulation points on crisp graphs and use Equation (91) as the recipe for dealing with the
fuzziness.  In the case of Type II, III, or IV fuzzy graphs, there may be more efficient
approaches than that of expanding the graph to Type I’ and then proceeding with the
algorithm just mentioned.

C. Example

Figure 15 presents an articulation point problem for a Type I’ fuzzy graph.  The
articulation points for the component graphs are given in Table 1.  Thus the fuzzy set of
articulation points is A b c b e f= + ∅{ , } \ { , , } \ . \ .1 75 250 + 0 .  This can be collapsed into
the fuzzy articulation points ′ = + +A b c e f\ \ \ . \ .1 1 75 750 + 0  shown in Figure 16.
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Figure 15.  An example Type I’ fuzzy graph for the articulation point problem.

Table 1.  The articulation points for the graph in Figure 15.

i µi Si

1 ¼ ∅
2 ¾ { , , }b e f

3 1 { , }b c

b

c

d

e

fa

Figure 16.  The fuzzy articulation points for the graph in Figure 15.  The large, solid vertices have
membership 1, the small, solid vertices have membership ¾, and the hollow vertices have
membership 0.

VII. Conclusion
This paper has classified how fuzziness can be incorporated into classical graph theory
and has emphasized the uniform application of a few key principles to the fuzzy graph
problem: the construction of fuzzy graph membership grades via the ranking of fuzzy
numbers, the preservation of membership grade normalization, and the collapse of fuzzy
sets of graphs into fuzzy graphs play a unifying role in the handling of fuzziness in
graphs.  This allows for a coherent treatment of the classic shortest path, maximum flow,
minimum cut, and articulation point problems.  It also simplifies considerably the
development of algorithms for the solution of these problems.  Although many fuzzy
graph problems are NP-complete, computationally effective algorithms do exist—we
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have presented several here.  We plan to address further computational questions in the
future and hope to develop software suited to the analysis of fuzzy graphs.
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IX. Appendix: Fuzzy Arithmetic

A. Fuzzy Numbers and Arithmetic

1. Fuzzy Numbers

A fuzzy subset A  built on ℜ , is a fuzzy number if A  is normalized and for each
]1,0(∈α , the α -cut Sα  is convex.  Since each Sα  is a subset of the real line, Sα  is

convex if and only if Sα  is an interval.  This convexity requirement reduces to the area
between the x-axis and the graph of µ A  being convex.

2. Arithmetic

Arithmetic operations are defined by Equation (12).  However, another way to formulate
the arithmetic is to use α -cuts and then perform the operation with the resulting
intervals.  In this manner we define:

(93) ( ) { }A B A B z a A and b B with a b z⊗ = ⊗ = ∈ℜ ∃ ∈ ∃ ∈ ⊗ =α α α α α ,

then the resulting fuzzy set A B⊗  has membership equation:

(94) { }~ ( ) max ( )µ α αA B z z A B⊗ = ∈ ⊗ .

Claim:  The max/min definition of Equation (12) and the α -cut definition of arithmetic
operations are equivalent.  Formally :

(95) { } { }{ }~ ( ) max ( ) max min ( ), ( ) ( )µ α µ µ µαA B
x y z

A B A Bz z A B x y z⊗ ⊗ = ⊗= ∈ ⊗ = = .

Proof:  Suppose ( )z A B∈ ⊗ α .  Then ∃ ∈a Aα  and ∃ ∈b Bα  such that a b z⊗ = .  Thus, we

have µ αA a( ) ≥  and µ αB b( ) ≥ , so that min{ ( ), ( )}µ µ αA Ba b ≥ , which implies

{ }{ }max min ( ), ( )
x y z

A Bx y
⊗ =

≥µ µ α .  Since α  was arbitrary, we can now conclude

{ }{ } { }max min ( ), ( ) max ( )
x y z

A Bx y z A B
⊗ =

≥ ∈ ⊗µ µ α α .  Now let { }~ max ( )α α α= ∈ ⊗z A B , so

again ∃ ∈a A~α  and ∃ ∈b B~α  such that a b z⊗ = .  However, since ~α  is maximal there do not
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exist ′a  and ′b  such that ′ ⊗ ′ =a b z  with µ αA a( ) ~′ >  and µ αB b( ) ~′ > .  Thus, for all x and y

such that x y z⊗ = , { }min ( ), ( ) ~µ µ αA Bx y ≤ .  Hence,

{ }{ } { }max min ( ), ( ) ~ max ( )
x y z

A Bx y z A B
⊗ =

≤ = ∈ ⊗µ µ α α α .

We can now conclude:

{ } { }{ }~ ( ) max ( ) max min ( ), ( ) ( )µ α µ µ µαA B
x y z

A B A Bz z A B x y z⊗ ⊗ = ⊗= ∈ ⊗ = = .

Thus, the two definitions of arithmetic operations are equivalent.

3. Closure

Fuzzy numbers are closed under the arithmetic operations.  If  all α -cuts of A and B  are
convex, then all α -cuts are intervals: A a aα

α α= 1 2,  and B b bα
α α= 1 2, .  From the

equivalence of the two definitions of arithmetic operations the following hold:

(96a) ( ) [ ]A B A B a b a b+ = + = + +α α α
α α α α
1 1 2 2, ,

(96b) ( ) [ ]A B A B a b a b− = − = − −α α α
α α α α
1 2 2 1, ,

(96c)
( )

[ ]
[ ]
[ ]
[ ]
[ ]

A B A B

a b a b A B

a b a b A B

a b a b A B

a b a b a a B

a b a b a a B

a b

× = × =

× × ≥ ≥
× × ≤ ≤
× × ≤ ≥
× × < < ≥
× × < < ≤

×

α α α

α α α α
α α

α α α α
α α

α α α α
α α

α α α α α α
α

α α α α α α
α

α

1 1 2 2

2 2 1 1

1 2 2 1

1 2 2 2 1 2

2 1 1 1 1 2

1

0 0

0 0

0 0

0 0

0 0

,

,

,

,

,

max

if and

if and

if and

if and

if and

( ) ( )[ ]2 2 1 1 1 2 2 1 2 1 20 0α α α α α α α α α α α, , max ,a b a b a b a a b b× × × < < < <














 if and

,

(96d) ( )

[ ]
[ ]
[ ]
[ ]

A B A B

a b a b A B

a b a b A B

a b a b A B

a b a b A B

÷ = ÷ =














÷ ÷ > >

÷ ÷ < <

÷ ÷ < >

÷ ÷ > <
α α α

α α α α
α α

α α α α
α α

α α α α
α α

α α α α
α α

1 2 2 1

2 1 1 2

1 1 2 2

2 2 1 1

0 0

0 0

0 0

0 0

,

,

,

,

if and

if and

if and

if and

undefined otherwise

,

(96e) ( )( ) ( ) [ ]min , min , min( , ),min( , )A B A B a b a b
α α α

α α α α= = 1 1 2 2 ,

(96f) ( )( ) ( ) [ ]max , max , max( , ),max( , )A B A B a b a b
α α α

α α α α= = 1 1 2 2 .

Thus, if each α -cut of A and B  is convex then all α -cuts of A B⊗  are convex for
{ }⊗ ∈ + − × ÷, , , ,min,max .  Also if A and B  are normalized, then ∃ ∈a Asupp( )  and

∃ ∈b Bsupp( )  such that µ A a( ) = 1 and µ B b( ) = 1. Thus, by definition µ A B a b⊗ ⊗ =( ) 1.
We can now conclude that if A and B  are fuzzy numbers, then so is A B⊗ .  Thus, the set
of fuzzy numbers is closed under all arithmetic operations.
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4. Elementary Properties

It is easy to see that addition, multiplication, minimum, and maximum are commutative
and associative.  The distributive property also holds.

Proof:   
{ } { }}{ }{ )}(),(min{max),(minmax)}(),(min{max)()( vuxyxz CB

yvu
A

zyx
CBA

zyx
CBA µµµµµµ

=+=×+=×+× ==

{ } { }===
=+×=+=×

}{}{ )(),(),(minmax)(),(),(minmaxmax
)(

{ vuxvux CBA
zvux

CBA
yvuzyx

µµµµµµ

{ } { }}{}{ )}(),({min)},(),(min{minmax)(),(),(minmax
)()()()(

vxuxvux CABA
zvxux

CBA
zvxux

µµµµµµµ
=×+×=×+×

=

{ }==
=×=×=+

}{ )}(),({min)},(),(min{minmaxmaxmax vxux CABA
bvxauxzba

µµµµ

{ }}{ }{}{ )}(),({minmax,)}(),(min{maxminmax vxux CA
bvx

BA
auxzba

µµµµ
=×=×=+

( ){ } )()(),(minmax )()( zba zCABACABA =×+××× == µµµ .

5. Inverses and Deconvolution

The field structure of fuzzy numbers fails when addressing the existence of additive and
multiplicative inverses.  It is clear that the additive and multiplicative identities are the
crisp numbers 0 and 1 respectively.  Thus, ideally we desire A A+ − =( ) 0 , for all fuzzy
numbers A.  Unfortunately, this is not the case.

Proof:

Denote the length of the support interval of a fuzzy number B by supp( )B .  Using the α -cut

definition of addition we obtain

 ( )( ) ( ) [ ] [ ] [ ]A A A A a a a a a a a a+ − = + − = + − − = − −− + + − − + + −
α α α α α α α α α α α, , , .

Thus, the length of each α -cut is ( )( ) ( ) ( )A A a a a a a a+ − = − − − = −+ − − + + −
α α α α α α α2 2 .  Taking

the limit as α → 0 , one finds that

( )( ) ( ){ } ( ){ } ( )supp sup supp supp suppA A A A A+ − = − =2 2( inf ) .

Hence, ( )( )A A+ − = 0  if and only if A  is crisp.  Thus − A  is not an additive inverse for A .  In

fact, for all fuzzy numbers A  and B , supp supp( ) ( )A B A+ ≥  and supp supp( ) ( )A B B+ ≥
allowing only crisp numbers to have inverses.

A similar problem occurs when searching for multiplicative inverses.  The main problem
is that performing arithmetic operations on fuzzy numbers increases the fuzziness.  That
is, the support of A B⊗  is larger than the support of A or B , if both A and B  are fuzzy.
This makes it impossible to solve equations of the type:

(97) A X C⊗ = ,

provided

(98) supp supp( ) ( )C A< .

On the other hand, if supp supp( ) ( )C A> , the equations A X C+ = , A X C− = , or

A X C× =  are solvable by a process called deconvolution.  This process is accomplished
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using α -cuts.  Let us consider the equation: A X C+ = .  Let A a aα
α α= 1 2,  and

C c cα
α α= 1 2, .  The goal is now to find an interval X x xα

α α= 1 2,  such that A X Cα α α+ = .

Now that the problem has been reduced to intervals, the solution is clear:

(99) x c a1 1 1
α α α= −  and x c a2 2 2

α α α= −

Now define { }µ α αX y y X( ) max |= ∈ .  From the equivalence of arithmetic by α -cuts

and arithmetic using Equation (12), we see that in fact A X C+ =   has solution X , where
X  is fuzzy with membership equation given by:

(100) { }µ α αX y y X( ) max |= ∈ .

The equation A X C⊗ =  with other operations follows similarly provided the supports
satisfy the above Equation (98) and in the case of division the following also holds: if

( )0 ∈supp C , then ( )0 ∈supp A .

B. Specific representations

Using the general fuzzy number representation for calculations can be time-consuming
and tedious in many cases.  Below we review several simple forms of the membership
function for a fuzzy number.

1. Interval Representation

In the interval representation a fuzzy number A = [A0,A1] has a membership function [KG
85]:

(101) µA x
x A A

x A A
( )

, [ , ]

, [ , ]
=

∈
∉





1

0
0 1

0 1

There are simple formulas for the basic arithmetic operations:

(102a) [ , ] [ , ] [ , ]A A B B A B A B0 1 0 1 0 0 1 1+ = + + ,

(102b) [ , ] [ , ] [ , ]A A B B A B A B0 1 0 1 0 1 1 0− = − − ,

(102c) [ , ] [ , ] [ , ]A A B B A B A B0 1 0 1 0 0 1 1× = × × ,

(102d) [ , ] [ , ] [ , ]A A B B A B A B0 1 0 1 0 1 1 0÷ = ÷ ÷ ,

(102e) { }min [ , ],[ , ] [min{ , }, min{ , }]A A B B A B A B0 1 0 1 0 0 1 1= ,

(102f) { }max [ , ],[ , ] [max{ , },max{ , }]A A B B A B A B0 1 0 1 0 0 1 1= .
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2. Triangular Representation

In the triangular representation a fuzzy number A = [A0,A1,A2] has a membership
function [KG 85]:

(103) µA x

x A

A A
x A A

A x

A A
x A A

x A A

( )

, [ , ]

, [ , ]

, [ , ]

=

−
−

∈

−
−

∈

∉














0

1 0
0 1

2

2 1
1 2

0 20

.

Here also there are simple formulas for the basic arithmetic operations:

(104a) [ , , ] [ , , ] [ , , ]A A A B B B A B A B A B0 1 2 0 1 2 0 0 1 1 2 2+ = + + + ,

(104b) [ , , ] [ , , ] [ , , ]A A A B B B A B A B A B0 1 2 0 1 2 0 2 1 1 2 0− = − − − ,

(104c) [ , , ] [ , , ] [ , , ]A A A B B B A B A B A B0 1 2 0 1 2 0 0 1 1 2 2× = × × × ,

(104d) [ , , ] [ , , ] [ , , ]A A A B B B A B A B A B0 1 2 0 1 2 0 2 1 1 2 0÷ = ÷ ÷ ÷ ,

(104e) { }min [ , , ],[ , , ] [min{ , },min{ , }, min{ , }]A A A B B B A B A B A B0 1 2 0 1 2 0 0 1 1 2 2= ,

(104f) { }max [ , , ],[ , , ] [max{ , }, max{ , },max{ , }]A A A B B B A B A B A B0 1 2 0 1 2 0 0 1 1 2 2= .
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